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Abstract— The sheet metal ductility for a thermoviscoplastic material is analysed by using a per-
turbation method. A significant rate of growth of the instability is characterized in terms of an
effective instability analysis. Analytical results are obtained for quite general material behavior
(including time-dependent effects). They match the results of Hill (1952, J. Mech. Phys. Solids t,
19) and Storen and Rice (1975, J. Mech. Phys. Solids 23, 421) for time-independent behavior.

{. INTRODUCTION

Sheet metal ductility is limited by plastic instabilities, especially by necking and shear bands.
The theoretical analysis of sheet necking usually considers two modes of plastic instability,
namely the diffuse necking and the localized necking modes. The maximum allowable
strains are determined by localized necking, and consequently diffuse necking has less
practical interest.

The first analysis of localized necking was developed by Hill (1952) for rigid-plastic
materials obeying the J,-flow theory. However, this analysis predicts an infinite ductility in
biaxial stretching while experiments show that necking-type failures take place.

To resolve this discrepancy two approaches have been developed. The first is the
M.K. defect theory of Marciniak and Kuczynski (1967), where an initial defect in the form
of a thin groove is postulated. The second approach relies on a bifurcation analysis and a
J; rate-independent deformation theory which introduces in a simple way an effect similar
to a pointed vertex on the yield loci, promoting instability in biuxial tension (Storen and
Rice, 1975).

A two-zone defect approach has also been developed by Ferron and Miiha-Touati
(1985) for small defects. Thus, the equations can be linearized and an analytical solution
of the problem is obtained.

An alternative approach is based on perturbation analysis (Dudzinski and Molinari,
1988 ;: Cunova et al., 1987). The sheet is assumed to be initially homogencous. At any stage
of the postulated homogeneous deformation process, a perturbation is superimposd to the
basic homogencous flow. The flow instability or stability is charucterized by the fact that
the perturbation is increasing or decreasing. The method can be used for the analysis of
cither diffuse nccking or localized necking. Indeed, it has been quite successfully developed
in fluid mechanics and later on used in solids mechanics for shear band analysis (Clifton,
1978 ; Bai, 1982; Molinari, 1985; Fressengeas and Molinari, 1987), and for necking in
uniaxial tension {Fressengeas and Molinari, 1985). It will be shown that the perturbation
analysis combines the main advantages of both the M.K. analysis and the bifurcation
theory. Morcover, the gap existing between these two theories can be overcome.

The perturbation approach shows that an unstable bchavior does occur for a limit
strain depending on the strain path. This instability is activated even for an equibiaxially
stretched rate-independent material obeying a flow law with a smooth yield surface. in
agreement with the MK, analysis. However, for a rate-independent material with a smooth
yicld surface, no band mode bifurcation is predicted under equibiaxial stretching by the
classical analysis of Hill (1952) and Storen and Rice (1975). This apparent contradiction
can be enlightened by the analysis of the rate of growth of the unstable modes. In cases
where no bifurcation is predicted by the classical analysis. instability is nevertheless not
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precluded. but the growth of the unstable modes appears to be very low. On the contrary.
very fast growing modes exist when a bifurcation appears. Therefore, the link between the
M.K. and the bifurcation approaches can be provided by the analysis of the rate of growth
of infinitesimal perturbations. For rate-independent materials, a complete agreement is then
obtained with the bifurcation results of Hill (1952). Stéren and Rice (1975). and Hutchinson
and Neale (1978).

An advantage of the perturbation analysis relies on the fact that quite general material
behavior can be accounted for. Thus. in this paper. the effects of rate sensitivity, material
anisotropy. and heat conduction are discussed. Inertia can also be analysed. In contrast,
only rate-independent behavior can be addressed by the bifurcation analysis while heat
conduction and inertia effects cannot be taken into account in the two-zone M.K. analysis
or in the analytical linearized defect theory of Ferron and Mliha-Touati (1983).

The necking mode instability in a heat conducting rigid anisotropic thermoviscoplastic
material is analysed here. The governing equations are settled in Section 2. In Section 3.
the general features of the linearized analysis are presented. An application to an isotropic
material under isothermal conditions is considered in Section 4. An important point comes
from the observation that the first mode to be activated is not necessarily the dominant
mode leading to localized necking. Actually, this mode may present a slow rate of growth
and can be overcome by a fast mode which is activated later, but with a much higher rate
of growth. Therefore, there is a need to evaluate in some way the rate of growth of the
ditTerent modes and to sclect the dominant modes governing the instability process. In order
to achieve this, a concept of effective instability is proposed. While the onset of instability
is characterized by a classical instability analysis (herein named absolute instability analy-
sis), the etfective instability analysis characterizes the overall strains for which a certain
intensity 1 the instability growth is developed. The effective instability is then used to
analyse thermal effects in sheet metal forming (Section 5) and material anisotropy (Section
6). Finally, the effect of a pointed vertex on the yield surface at the loading point is discussed
in Scetion 7,

The ducility of metal sheets is characterized by forming limit curves. All the results are
obtained in simple analytical forms where the role of the physical parameters can be casily
discussed.

2. GOVERNING EQUATIONS

The process of localized sheet necking in biaxial loading is analysed within the frame-
work of generalized plane stress. The prineipal axes of strain rates are designated by X and

>
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Fig. I. Geometry of the sheet plane. The directions of the overall principal strain rate are Yand V.
The principal axes of orthotropy coincide with the dircctions X and ¥ up to instability.
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Y (Fig. 1). Due to the plane stress assumption the non-vanishing components of the stress
tensor, in any frame (x,.x,) defined in the sheet plane, are:

0, =0, 0O =0, and 0.

The strain rates, as well as the stress components, are considered as uniform through the
thickness of the plate.
[t is supposed that loading conditions are always satisfied (i.e. elastic unloading is
disregarded). Thus. since large deformations are constdered. elasticity can be neglected.
The material behavior is stated to be rigid viscoplastic. The associated flow law is given
by:
. 0F

D,y=r‘.5&’—”. (l)

The Eulerian strain-rate tensor D, is defined by:
D,y = %("x.ﬂ“’"ﬂ.;)l af=1.2 ()

where ¢, are the velocity components, and .x designates the partial derivative with respect
to x,.

The material is assumed to present an orthotropic symmetry. and the principal axes
of anisotropy (x,y) coincide with the principal axes of strain rate (X, V) as long as the
deformation is uniform.

The equivalent stress, in the Hill theory of orthotropic plastic materials (1950). is given
by:

) \/3 [(G+ H)al =2Ho 0., + (H+ F)al,+ Nai, + Naf\-" :

742 F+G+11 )
where F, G, H and N are parameters characterizing the current state of anisotropy. They
can be deduced from the ratio R, of the trunsverse to the through-thickness strain (sce
Appendix A). The components o,,, a,, and a,, are referred to the principal axis of
anisotropy. The equivalent strain rate £ is work-conjugated to the equivalent stress 6

o, D, = éi. €))

From the definition of £ (4) and the fact that ¢ is a homogencous function of degree | in
the components g, it results, after substitution of the flow law (1) into (4), that:

L= (5)

After some algebraic manipulations of (1) it can be shown that:

. h GD, - HD.. \ HD..—FD,,
g = - LIRS I f et LS LT
¢ \/; [F+G+H] [r (FG+GH+ HF) +C(FG+GH+ HF)

+H FD. -GD., : , Dl H 6
FG+GH+HE) T~ ALY

The hardening law is stated to a power law relating the equivalent stress 6 to the absolute
temperature 0, the equivalent strain rate £ and the cumulated plastic strain £:

E= J é(r) dr. (7)
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The material characteristics are the constant u. the strain hardening exponent n, the
strain rate sensitivity parameter m and the thermal softening exponent v (v < 0).
The flow law expressed in the axes (X, Y) reads:

D, = T.us: N Dy;- = Tv}'é , D.r_v = T.ryé: (8)
with
I = § (G+H)o, —Ho,, 1 o
“72  F+G+H ¢ éo.

(H"‘F)O'_,",.""HU_‘_‘I
F+G+H ¢
3 No, | ¢§

T =3 FrG+Rs 7, ®

-
" éa,,

In the following. the equations have to be expressed in a frame (x,..x;) having an
orientation angle W with respect to (X, Y) (Fig. ).
The flow law, written in the (x,.x;) frame, is:

Dy, =Ty &; Dyy=Tné: Dyy=T.é (10)
with

Ty =T, cos* W+ T, sin* ¥+2T, sin ¥ cos ¥

Ty =T,sit® W+ T, cos* ¥ =2T,,sin ¥ cos ¥

Ty = — (T, —T,)sin ¥ cos ¥+ T (cos’ ¥ —sin’\¥). an

Under the plane stress assumption, the compatibility conditions are (with the usual
approximations done in the plane stress condition) :

{ q...:_,_“ +‘?3933 = _‘22?‘}__ 12
2\ 2xi oxt ) ox dxy )
The current thickness is /. Then the equilibrium equations read:
¢
E;‘; (ll(f,”) = 0: 1,/‘ = 1,2 (|3)

where 644, 631 and o, denote the values of the stress components averaged through the
thickness (Hill, 1950). The current thickness is related to the initial homogencous thickness
{0} by thc relation;

h = 0) e (14)
where «; is the togarithmic deformation in the direction x, orthogonal to the plate. The
relation (14) is equivalent to:

I;/h = D);. (15)

Assuming that & fraction f§ (Taylor-Quinney coeflicient) of the plastic work is converted

into heat, and that the boundaries of the plate are adiabatic, then the conservation of energy
leads to the following equation (see Appendix B):
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30 &0\ k(20 eh 0 ¢h
K -.. 1
cf = "(e c’vz)+h(6x. 7 6n)+B (16)

6 is the material derivative of the absolute temperature, c is the heat capacity and & is the
thermal conductivity. The Taylor-Quinney coefficient will be taken equal to 0.9.
With the incompressibility condition:

D“+Dz:+D33=0 (17)

a complete set of 11 equations is obtained : the flow law (10), the hardening law (7), the
energy equation (16), the compatibility and the equilibrium (12, 13), the definition of the
equivalent stress (3). the incompressibility condition (17) and relation (15). The unknowns
are, for a given ¥ : the strain rates D,,, D,,, D,; and D,;, the stresses g,,, 6,2, 0,; and 6.
the strain rate . the temperature 6 and the thickness A.

Overall constant principal strain rates D, and D;, [in the frame (X. ¥)] are applied at
remote boundaries. The straining path is linear and defined by the ratio:

Dy,
D,

= p = const. (18)

The following velocity field (defined modulo arbitrary additive constants)

v, = xD,,

t, = yDj, (19)
is a solution of (18). As long as the flow is stable, the velocity field is given by (19) and the
strain rates are uniform. Inertia is neglected.

The initial temperature and thickness are uniform: ¢ = 0°(0), h = h*(0). A homo-

gencous solution, denoted by the superscript °, §° = (Dy\, Dy, ..., 07) results from these
conditions. In particular, the homogencous principal stresses satisfy the following relation,

resulting from (3) :
a5 _\ﬁ F+G+H 12 (20)
&' N3 G+H-2Ha+(H+ F)a? -

where the stress ratio z is defined by :

o) _p(G+H)+H

YT T HYP+Hp

21

The second equality in (21) comes from the flow law (8).

Therefore, when the flow is stable, T,,, T,, and T,, depend only on the matcrial
constants F, G, H and N, and the loading path p, while the coefficients T}, also depend on
the orientation ¥ of the frame (x,, x,).

3. EFFECTIVE INSTABILITY ANALYSIS

The stability of the homogeneous solution is now analysed. Since the localized mode
of necking presents the most practical interest, the analysis is restricted to that mode. The
stability of the homogeneous solution S” is tested by superposition at any time ¢, of a small
perturbation S = (6D,,,0D,,....,380).

The following form is stated for the components of S :
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0S, = 0S; exp [n(t—1o)] exp (ix)). (22)

The perturbation is constant on lines x, = const. of inclination W (Fig. 1). The polarization
vector of the perturbation is:

38° = (8D,.8D::. ... 00°). @3)

The spatial modulation is periodic and defined by the wave number ¢. The number y
(generally complex, but real in the applications considered herein) characterizes the growth
of the perturbation if Re (n) > 0 (instability), or the decay if Re () < 0 (stability). When
instability is occurring the growth of the perturbation is viewed to represent the early stages
of a necking process in bands of inclination ¥. The angle ¥ has to be optimized in a way
which will be determined later. The physical solution is the real part of

S =S +6S exp [n(t—1ty)] exp (iéx)). (249)

After linearization of the equations, the polarization vector 85" appears to be an
cigenvector of the following system of equations, resulting from the flow law (10):

D, 3 oo, 003, day,
‘ ;,”* =T (;.' +Uin — +U -2 2000 .
i i a G q
on;, . OF da . day, L day,
=Ty s Uy o ULy 7 +2U 27
{ & a a
3D, 5 b Va5, 37 |+
‘ ;‘i- = I.x:‘;.,' +U a0 ‘ .Ztl +U{:z:( . +(U‘|'1|2+U'1'z:|)‘ e (25)
i £ a G G
from the hardening law (7)
o6 n Sé o0
j—=|= i) o oo 26
s (E'”"’) ity (26)
from the cnergy equation (16):
o0 9é" g
—(Q+iy - +8B - +B-—=0; 27
0 £ g
from the compatibility (12):
3D, = 0; (28)

from the cquilibrium (13) [egn (15) has been used to eliminate the thickness 4] :

LS9l i 0Dy _ o

15 2

0F - 0'“1 (SD

et 4 2 e =0, (29)
g g &

from the definition of the equivalent stress (3):
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67&.;” ué‘{” +T:~6_Q 7r:56.!21 (30)
c g

and from the incompressibility condition:
0D, +96Ds:+0D;; = &2))
The following non-dimensional parameters have been introduced :

Bvé” k&t

r: (32
€

o=

The parameter Q characterizes the effect of heat conduction. When the heat conductivity
k is large or when the applied strain rates are small, then Q is large and the problem is
isothermal. On the contrary, for small values of Q. the heat conduction effects are negligible.
The coefficients 77, and U, are defined by (11) and in Appendix C, respectively.

Equations (26) and (27) are obtained from the approximation of the material deriva-
tives 0 and £ by the partial time derivatives. This approximation is valid if the velocities are
not too large.

The perturbed solution (24) does exist if the linear system (25)-(31) admits a non-zero
solution §S”. Setting the determinant of that system equal to zero, the following cubic
equation in 5 is obtained:

=i U%a(mU%a + T3 +ﬁz[(/‘} = QU%:)(mU%2:+ T33)

-

I n_ ., Y
+BU 00T —Utza) & Usyina+ 4 1A1]
+'3[A‘33(U'£::: =T +AQnU 30+ TH3)

+ :, Usaa A5 —QU ) + A1 AHQ - 8)] JQ s U%::' (33)

with

g, 20,
Ai=‘é¥(rix05:::‘r’zuizul)+ l‘(rwue.’:z:“rﬁzvgzaz)

‘ b o + 2(’ 3 o
A! = g:‘(U‘f:z:U::::‘Uu: U22 + L L'(UH!’ ’ 22 U!!IIUINI)- (34)

To cach of the three complex roots of (33) is associated a mode of perturbation. The
linearized theory predicts instability (i.e. the growth of the perturbation) when onc of the
roots of (33) has a positive real part:

Re() > 0. (335)

However, an unstablec mode can sometimes grow very slowly and can therefore be overcome
by another mode appearing later with a much higher rate of growth. Thus, it is useful to
introduce some measure of the mode growth, in order to select the dominant modes.

Let us consider a given orientation ¥ of the perturbation, a given path of deformation
p and a given positive number e. The values (if they exist) e;(e, 'V, p} and gi(e. ¥, p) of the
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principal homogeneous logarithmic deformations are considered. for which one of the roots
7 satisfies the relation

Re{f) =e (36)

while the real parts of the other roots are less than e. When the condition (36) is realized.
the mode associated to the orientation ‘¥ is said to present an effective instability of intensity
e, or an effective e-instability.

The first mode to attain the effective e-instability is characterized by the orientation
Y minimizing ¢5. We note:

gi(e.p) = Infel(e, W, p)
=& (e, ¥*. p). 37

The onset of instability corresponds to e = 0; then (36) is named the absolute instability
criterion. The critical strain where absolute instability occurs is named the absolute limit
strain and is defined by:

g = I\rgfa:((). Y. p). %)

For e > 0, & is named the e-effective limit strain and 'P° the e-cffective optimal orientation,

The parameter ¢ introduced in the effective instability analysis is a measure of the rate
of growth of the fastest mode. Indeed, among all the unstable modes, the one which is the
first to attain a growth rate cqual to ¢ is sclected. The corresponding effective critical strain
& can be roughly viewed as the strain for which the instability develops a growth rate equal
to e.

One has to keep in mind that this approach is conducted in the framework of a
lincarized analysis. Therefore the results are valid only when the localization process is not
too strongly developed. In the fincarized approach the modes of instability can be analysed
separately and the full solution is obtained by superposing the modes.

The parameter i, assumed constant in (24), is actually time-dependent since the roots
of the algebraic equation (33), where the cocfficients depend on the homogencous solution,
are time-dependent. Therefore, the linearized analysis is consistent only for perturbations
which are growing much faster than the basic homogeneous solution, i.c. for a large enough
value of e (see Molinari, 1985, and Fressengeas and Molinuri, 1987, for more details).

The linearized stability analysis presented here is based on a Eulerian formulation.
When a Lagrangian scheme is used, some small differences can be observed in the prediction
of the rate of growth of the perturbation. These differences are negligible for fast growing
perturbations.

4. ISOTROPIC MATERIAL UNDER [SOTHERMAL DEFORMATION

Concerning sheet metal forming, it is interesting to analyse the dependence of & on
the strain ratio p.

The simple case of an isotropic material under isothermal deformation, which can be
compared with previous works, is first analysed.

To be consistent with the isothermal hypothesis, the thermomechanical coupling must
be neglected in the energy equation (16) ; thus § = 0 and from (32) B = 0. One also has to
set 061 = 0. so that eqn (27) is identically satisfied. Formally it is equivalent to setting f = 0
and k=0, i.e. B=0 and Q = 0. Indeed, eqn (27) then implies #vé0°/0” = 0 and the
corresponding term disappears in (26). Then the characteristic equation (33) reduces to a
third order equation which is the following quadratic equation multiplied by #4:
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(39

For an isotropic material. F = G = H = N/3 and the components of T and U in the frame
(X.Y)depend onlyon p:

= 20, —ay, _ \/3
xx = 20—, —2(l+p+pl)|2
r 20 3
T2 2l+p+p)tt
I,=T; =0 (40)

The components in the frame (x,, x,) axes are given by (11).

The value n = 0.25 is now assigned to the strain hardening parameter.

In Fig. 2. the roots (real) §* and /i~ of eqn (39) are represented versus the strain ; for
p = 0 (plane strain case), for different values of the strain rate sensitivity m and for the
orientation ¥ = 0. For a given m, 1j* grows rapidly when the strain ¢; passes beyond the
value ¢; = n = 0.25 corresponding to the maximum load Considére criterion. The growth
is more significant when m is small. For m = 0, a singular behavior is observed : j* tends
to + o when & tends to n. For a given ¢ > 0, the strain £ is increasing with m (stabilizing
effect of the strain rate sensitivity). For m = 0, & is independent on e > 0.

The dependence on the strain ratio p of the effective limit strain e = i!.l’f &, is illustrated
in Fig. 3, where forming limit curves corresponding to different values of the effective
instability parameter ¢ are represented. The strain path varies from p = —1/2 (uniaxial
tension) to p = | (equibiaxial stretching). The strain rate sensitivity is zero,

For | > p 2 0, the optimal orientation (which is W = r/2 fore = 0) iscqual to ¥ =0
for ¢ > 0.3 (Fig. 4a.b). For p = 1, the optimal orientation is undetermined (Fig. 4¢). For

sg
m-lo-
40 L m=0. 01
;’0'
30 |
o |
2 |
10
. 0.1 €
. A €00  ESme0.02
n- ,h
-10 b ,’|
10
-20 | 11!
1y !
we0.02 ; , Y-0 p-0.0
-3 | v
[ :n-lﬂ‘s M
-0 | rroy
g
11 '
=50 1t 3
n=0. 01

Fig. 2. For p = 0 (plane strain), ¥ = 0, n = 0.25, variations of the roots rj* and 5~ in terms of the
bulk homogencous strain £;. The stabilizing eflects of the strain rate sensitivity m are illustrated.
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e=25 10
t x4
0.8
o=, 3
@=25 0.6
and \ e=10
e=2.5 4
o=l o.
. 2 o=l
=0, 25 w~0.
£/

0.4 0.2 00 02 0.4 06 08 Lo

Fig. 3. Effective forming limit curves for n = 0.25 m = 0. The variations of g, are represented in
terms of the strain ratio p. for different values of the effective instability parameter ¢.

p < 0. the optimal orientation ‘P is shown in Fig. 4d, e to depend strongly on the strain
ratio p.

[t is tnteresting to note that for large values ¢ = 10, e5(¢ = 10, ¥} = g (e = 0, ¥*) for
p <0 (Fig. 4d.e). This mecans that the mode of orientation ¥, activated for the strain
£5(e = 0, W), has an explosive growth since it attains instantaneously the rate of growth
¢ = 10. This mode is dominant at the final stage of the instability process.

It is observed for increasing values of the effective instability parameter ¢, that the
forming limit curves change their shape and tend to a limit for p < 0 (Fig. 3), whenm = 0.

In Fig. 5. the growth of different modes in terms of the deformation is represented for
m = (. As noted previously, the optimal orientation ‘P minimizing the strain e\ (e. 'V, p)
depends generally on ¢ (Fig. Sa). It is worthwhile noting that 7 is growing continuously
for p >0 (Fig. Sb), while it may present a singular behavior for p <0 (Fig, 5a). For
p= =05 and W =" =0.615 4" is suddenly growing to inlinity when &) = 2n = 0.5,

" ASSOLUTE------- N w0, o7
o1 S’ p=0.0
I EFFECTIVE INSTABILITY
0.0 .4 0.8 1.2 1.8 2.0 2.4 28 Y

Fig. 4a.
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Fig. 4. Dependence of & on the orientation ' of the perturbation when n = 0.25 and m = 0. For
values of the effective instability parameter ¢ > 0.3, the optimal orientation is ‘P = 0tor0 € p < |
(a.b). For p = 1, ¥ is undctermined (¢). When p < 0, 'V depends strongly on the strain ratio p.
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Fig. 5. Evolution of if* and i~ in terms of the deformation &, for different modes churacterized by

the orientation ‘¥, The thick curve represents ei{e. p) = ig&'n‘, (e p).

e = lim £i(e, W' p= ~0.5 =2n=0.5.

(41)

Indeed, for p < 0, the forming limit curves are tending, when e — =, to a limiting curve
(Fig. 3) which will be proved to be the Hill curve (1952). More preciscly, the following

results are obtained. Forp <0

anl Y. p) =W =tan" '/ ~p

42)

(lx_n; ele.p) = t_-%{; 43)
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This means that. for a rate-independent material, the instability is fully developed (with an
infinite rate of growth) when the strain ¢; attains the limiting value given by (43). Then, the
orientation of the dominant mode is given by (42). This is the orientation of the line of zero
extension rate (Hill, 1952).

The proof of (42) and (43) relies on an asymptotic analysis. One seeks a particular
mode of instability for the linearized problem. corresponding to the following asymptotic
expansion with respect to m:

1
;{(m; +mi, +0(m")). 44)

The singular term 1/m has been included in order to restore the singular behavior of 4+,
for ¥ = W, observed in Fig. 5a.
The subsitution of (44) into (39) leads to the following expression :

27 . N o - - " n oy
Uie: T30 —tioU i =i ThU G + AT AT+ AT — g—nU:‘::z=0- (45)

It is readily checked that ¥ = W* implies T3, = 0 and U3,;; = 1. Then, the term O(1/m)
in (43) vanishes and the term O(1) reads:

. o .. 20‘f . n
—r,(,+(~;,';'r,. 2 ) h=5=0. (46)

For the mode W = W* we have:

o A+p) o oan e
a \/3(l+p+p yr @’ \/3(l+p+p )":
Tiz _ *\/ i 47

¢ \/3(!+p+p )"

The onset of instability for that mode appears when s, = 0. Using (46) and (47) this
condition yields:

o (48)

Therefore, the mode W = W" coincides with Hill's solution (1952) asymptotically when
m — 0. It is worthwhile noting that due to the /m singularity, the growth rate of that mode
(rf = rjig/m) is very fast when mt — 0. Thus, form = 0 and for large values ¢ > 0, the dominant
mode is associated to ¥ = W, The effective limit strain is then given by (48). Thus for a
rate-independent material p < 0, the effective stability analysis lcads to the same results as
the Hill localization analysis (1952).

fn biaxial stretching (p > 0), the optimal angle is W = 0 if ¢ is large enough. In
opposition to the paths p < 0, §* does not present any singular behavior (Fig. 5b). There-
fore, when e increases, the growth of ) is unbounded (Figs 3 and 5b). The fact that, for
e = 10, no effective instability appears in equibiaxial stretching (Fig. 3) can be related to
previous works which have shown that a band mode bifurcation is not possible for strain
path p > 0 and for a rigid plastic material obeying a flow law associated to a smooth yield
surface (no vertex) (Storen and Rice, 1975 Hutchinson and Neale, 1978). Our analysis
shows, however, that band mode perturbations may grow (in agreement with the M K.
analysis) but with a low rate of growth. The solution is unique {no bifurcation) but unstable.
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Fig. 6. Stabilizing effects of the strain rate sensitivity m on the effective forming limit curves ¢ = 10
and e = 2.5.

The stabilizing effect of the strain rate sensitivity m is illustrated in Fig. 6. The forming
limit curves are associated to the values ¢ = 2.5 and ¢ = 10 of the effective instability

parameter.
Figure 7 illustrates the variation with the orientation ¥ of the critical strain
ei(e, ¥, p = —0.5) in uniaxial tension (for e = 0 and ¢ = 10). The optimal oricntation is

shown to be independent of the strain rate sensitivity m, while the level of ¢} is strongly
affected by m for ¢ > 0. It is worthwhile noting that the strain ¢ corresponding to the onset
of instability is not affected by the strain rate sensitivity. It is recalled that for e = 10, the
orientation ¥* corresponds to the zero extension line.

The growth of #* is represented in Fig. 8, for p = —0.5 and for the orientation
¥ = tan~' \/—p = 0.615 which is optimal (and equal to Hill's orientation) when e is large
enough. The singular behavior of 1™ existing for m = 0, is smoothed when the strain rate
sensitivity is different from zero.

5. THERMAL EFFECTS

The ductility of materials during forming processes can be significantly influenced by
thermal softening. The decrease of the yield stress for increasing temperatures is a crucial
factor affecting the plastic flow localization. A thermoviscoplastic instability results from
the heat generated by plastic deformation that can be concentrated in narrow regions
(Tresca. 1878 ; Zener and Hollomon, 1944).
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Fig. 7. Dependence of # in terms of W for p = 0.5, for ¢ = 0 and ¢ = 10, and different values of
the strain rate sensitivity s (2 = 0.25). It appears that the optimal orientation ¥ is independent of
m. The value of the effective instability strain £ = igi’a;‘ is strongly affected by m for ¢ = 10, but

not for ¢ = 0. Thus, the criticil steain corresponding to the onset of instability does not depend on m.
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Fig. 8. Evolution of the growth rate 5 * of the perturbation associated with the optimal orientation

¥ =" = 0,615 for p = —0.5. When m = 0 this perturbation presents an explosive growth for the

strain £, = n-(1 4+ p) = 2n given by Hill's analysis. This singular behavior is smoothed by the strain
rate sensitivity.

For materials presenting a low thermal conductivity (e.g. polymers, stainless steel) or
for high strain rate processes. this localized heating is possible since the characteristic time
of thermal conduction (associated to the defect under consideration) is large compared to
the duration of the localization process.

Experimental evidence of the role of thermoplastic instabilities has been presented. e.g.
by Ferron (1981) for simple tension test at room temperature, Dodd and Atkins (1983) for
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Fig. 9. The heat conductivity is zero. The forming limit curve 8 = 0.9 illustrates the destabilizing

effect of the thermal softening (which is zero for the isothermal curve, 8 = 0). For the simple

shearing path p'= 1, no instability occurs when § = 0. An adiabatic shear band appears for f = 0.9
(=14 x10"SL.n =012 m = 00133, v= —-0.50).

sheet metal forming, and in review papers by Rogers (1979) and Bedford et al. (1974) for
shear instabilities.

A theoretical analysis of thermoplastic instabilitics in sheet metal forming has been
presented by Ferron and Mliha-Touati (1985) in the framework of a lincarized Lagrangian
defect analysis and by Dudrzinski and Molinari (1985) for a kinematic hardening and
temperature-sensitive material,

Here we present o discussion of the influence of thermal softening on the plastic
flow instability. Necking and shear banding in biaxially loaded ductile metal sheets are
considered. Only the formation of shear bands parallel to the plance of the sheet is addressed
here, The occurrence of shear bands in the cross-section of the neck, at the final stage of
the process, just before rupture, is not discussed.

The material is isotropic and rigid plastic. We assume that the strain rates are not too
high so that inertia effects are negligible. The calculations are carried out with the following
material parameters [see eqn (7):

w=1.41x10"SI

n=1012
m=0.0133
= —0.51.

The heat capacity is:
C=36x10J/m'- K.

These parameters are representative of an HRS stecl (Clifton er al., 1984).
The homogeneous temperature is given by :

Foym |y Lt ~v)
0 = [ﬂ_{fﬂ(})ﬂ f_‘:; 5'»t!+n)+0::(0}(l -v):l (49)

where 0°(0) is the initial homogencous temperature. This results from the integration of
the encrgy equation (16). where all terms in the second member disappear except figé. The
expression (7) of ¢ has been used.

The growth rate of the perturbation is governed by the roots of the cubic equation
(33). The effect of thermal softening is illustrated in Fig. 9, where the heat conductivity is
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Fig. 11, The strain rate sensitivity is strongly stabilizing for paths close top = 1,

assumed to be zero. The limit curves are calculated for e = 2.5. The curve f# = O corresponds
to an isothermal process: the thermomechanical coupling in the encrgy equation (16} is
cancelled, thus the temperature keeps its initial value 0°(0). The second curve, corresponding
to f§ = 0.9, takes account of the thermomechanical coupling. A global decrease of the critical
strains, due to the thermal softening that promotes instability, is observed. Moreover, for
the path p = — 1 corresponding to simple shearing, an instability is depicted, while it is not
for f# = 0. This instability results from the following well known autocatalytic process: at
some place a perturbation of the temperature field generates a local material softening and
thus a local increase of the strain rates, which in turn generates more heat production. This
thermoviscoplastic instability sometimes degenerates in a localized shear band (so called
adiabatic shear band), as is the case here for p = ~ 1.

For paths —1 < p < 0 the instability mode results from a combination of shear and
necking modes.

Thermal softening is a necessary but not a sufficient condition for thermoviscoplastic
shear instability. Simple shearing of a thermoviscoplastic material becomes unstable when
strain hardening is overcome by thermal softening (Zener and Hollomon, 1944). For the
power law (7) shear instability will occur (but not necessarily localization, see Molinari,
1985 ; Fressengeas and Molinari, 1987). if and only if v+ < 0 (v is negative for a thermal
softening material). This is illustrated in Fig. [0, where it appears that the ducility is infinite
forp= —1whenv+n>0.
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Strain rate sensitivity is a very stabilizing factor for paths close to p = — 1 (Fig. I!).
This is in agreement with theoretical analysis of simple shear instability (Molinari and
Clifton. 1987).

Heat conduction refrains the temperature localization. Its stabilizing effect is more
pronounced for paths close to p = —1 (Fig. 12). When the non-dimensional heat con-
ductivity Q is equal to zero. the effects of heat conduction are negligible (low heat conducting
material. or fast process). When Q is large the problem is isothermal and shear localization
for p = ~ 1l is hindered (Fig. 12).

6. ANISOTROPY

The influence of the material anisotropy is analysed now. Only the case of orthotropic
symmetry will be considered. This plastic anisotropy can be characterized by the ratio
of the transverse to the through-thickness strain measured in uniaxial tension for three
directions (R,. Rus. Rw) where 0. 45 and 90 ' represent the angles of the tensile axe with
respect to the rolling direction (see Appendix A). Barata de Rocha and Jalinier (1984) have
analysed the effect of an initial orthotropic anisotropy. combined with isotropic hardening,
on the formability of stretched sheets. Using the defect theory of Marciniak and Kuszynski
(1967). they calculated the forming limit curves at localization.

A quantitative comparison between the results of the M K. theory and those of the
effective instability analysis is difficult to establish. Indeed. the results of the M.K. theory
depend on the amplitude of the initial defect, while the results of the effective instability
analysis depend on the intensity of the parameter ¢. Nevertheless, it is expected that for an
appropriate value of ¢, the prediction of the perturbation analysis should present the same
trends as that of the MLK. localization analysis.

A matcerial exhibiting normal anisotropy (R = Ry = R,s = R,y is first considered. The
higher the value of the anisotropy parameter R, the sharper is the curvature of Hill's yicld
locus in the region of symmetric biaxial loading (Fig. 13).

The exponent #j* characterizing the growth rate of the perturbation is a root of the
algebraic equation (33). The forming limit curves are calculated for ¢ = 2.5 and ¢ = 10
(Fig. 14). The stress ratio 2 varies from uniaxial tension (2 = 0) to cquibiaxial tenston
(x = 1). As shown in Appendix A, the strain path p corresponding to uniaxial tension
(x = 0) is given by :

p=-—". (50)

For p 2 0, high R-values allow the condition for instability at an carlicr stage of the

e
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1 0. 4 Q-25.
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m=0. 0133
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Fig. 12. Stabilizing effect of heat conduction.
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Fig. 13. For normal anisotropy. the curvature of Hill's yield surface at the equibiaxial loading point
increases with the anisotropic parameter R.

(a)

b
RD R4S RE0
e 0.3 0.3 0.3 e
b 1.0 1.0 1.0
25 2.5 2.5 0.2 a=10.
S.0 5.0 S.0 g
.2 -0.8 0.4 0.0 0.4 o8 1z
R=S.
(b) R=2.5 €x R=0.3
[1.2
R=1.
R-0.3
0.8 R=1.
0. 4
R=2.5 a=2.5
; R=S.
€y
1.2 -0.8 0.4 6.0 0.4 0.8 1.2

Fig. I4. Increasing values of the parameter R, characterizing the normal anisotropy, are destabilizing
for the strain paths p > 0 (n = 0.22 and m = 0.012).
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Fig. 15. Dependence of &5 with respect to W for the stress path 2 = 0.7 and ¢ = 10. When Ry, = 5.
the optimal orientation ¥ is different from zero.

deformation and result in reduced limit strains (Fig. 14). As demonstrated by many authors,
c.g. Tvergaard (1978), and Ferron and Mliha-Touati (1985), this is an effect of the yield
surface-curvature. For increasing R, the curvature is larger at the equibiaxial loading point
(Fig. 13). Then, the plastic flow is less stable for p > 0.

It can be noted in Fig. 14 that the growth of the instability is very stow for equibiaxial
loading. even for R = 5. When e = 10, p = |, the limit strain £ is infinite while it is finite
when ¢ = 2.5, For this straining path, the instability process does not really lead to a fast
growing localized necking band, as is usual for a flow law associated to a smooth yield
surface.

A complete analysis of the effect of R,, R,s and Ry, can be easily done with the
proposed perturbation method and leads to the same qualitative results as those obtained
by Barata de Rocha and Jalinier (1984) with an M.K. analysis.

Another illustration is given by the effect of Rys. In Fig. 15, & is represented versus
the orientation W for ¢ = 10 and p = 0.307, and for different valucs of R;5. When R, = 5,
the effective optimal orientation W is different from zero, while for an isotropic medium
W is zero. This effect of anisotropy has been noted by Barata da Rocha and Jalinier (1984).

7. DEFORMATION THEORY

In order to bring out in a more explicit manner the effect of the local shape of the yield
surface on the forming limit curves in the positive p range, we now focus on results obtained
from the deformation theory of plasticity, Stéren and Rice (1975) demonstrated that the
deformation theory of plasticity is equivalent to a flow theory which permits the devel-
opment of a pointed vertex on the yield surface. These authors incorporated the deformation
theory into a classical bifurcation analysis for rate-insensitive materials. We consider here
a rate-sensitive anisotropic deformation theory.

The material is incompressible, rigid-plastic and transversely isotropic (normal aniso-
tropy). The constitutive law used here is associated with the plane stress Hill yicld function

[eqn (A6)]
_ 3 /JR+1] , . 2R u2
““ﬁdm["'*ﬁ"m“*ﬁ] Sl

where ¢, and o, are the principals in plane stresses. The 1-axis here is identical to the x-
axis, since the orientation of the perturbation is taken to be ¥ = 0.
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An appropriate measure of strain is the logarithmic strain tensor, whose principal
values are given by:

E = ]n /:' (52)

where (4,.4,.4;) are the three principal stretcines relative to the reference configuration.
The incompressibility condition becomes :

iisiy =1 (53)
or
5|+£3+€3=0. (54)

The constitutive law is formulated as follows:

g, =T,¢
€2 =Tk (5%)
with
é JR+I _
" a—,-im<2°' R+;”=)/2°
G IR+ 2R
O R U e/, PR 2.
Ta=a0 =, R+2( 7T R+1 ”')/ ’ (36)

The viscoplastic response of the material is governed by (55) and the hardening law (7)
G = pim i, (57

We restrict the stability analysis to biaxial stretching (p > 0). Perturbations of oricn-
tation ¥ = 0 only arc considered. This is justificd for normal anisotropy but not for a
general anisotropy (Barata da Rocha and Jalinier, 1984). The compatlibility conditions (12)
and the equilibrium equations (13) are written in the simple form :

L (0%, 0%,

(a“ + 5}‘;‘) =0 (58)
(hoy) _ 0(hay) _

ax, " dx, =0. (9

A perturbation analysis of eqns (51), (54), (55), (57). (58) and (59) gives the following
lincar equation with respect to 7 [the identity (U7,,,U%2:2— U'12:U%;,) = 0 is used] :

me> Uzl + (T3 +nU%20) U —8 (T U = T3 US122)? =0 (60)

where T, and T3, are given by (56) and where:

) ? 1 .
U;u::o""((’—‘r“) —3R+ T}

Gay) “2R¥z T
0TwY 3 R+ 2
Uip=26 (60’;:) =-_;k:-z ~Ty
, e\ . arz.)"- 3 R .
:“= ) =1 - = - —— — 9. 6'
Uirz: "(ean) "(aa.. sRy2 TnTE: (6D

From (60) it results that an instability of intensity e occurs for the following critical strain:
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Fig. 16. Evolution of the growth rate 7 in terms of the deformation ¢, for different values of the

strain rate sensitivity m and for p =0 (16a) and p =1 (16b). It can be noted that for p = 1,5

presents a singular behavior when m tends to zero, which is not the case for the flow theory (Fig.
5b). This is a vertex effect.

N ?3 (1+2R) £
“len) = \A\/ @+R)(1+R) ( 2R \" ©
I+-——p+p‘)

with

Tas US133) U591
o (T34 U .
"""U‘izz:ze‘*‘?‘:';(TYIU{:"zz:—T;:U';nzz)z

The onset of instability starts for the strain &(e = 0, p). For a vanishing strain rate
sensitivity the growth of this instability is explosive. This is due to the singular behavior of
rjillustrated in Fig. 16. For an isotropic rate-independent material (n = 0.22,m =0, R = 1),
the relation (62) brings out the same resuits as those found by Stéren and Rice (1975).
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Fig. 18. Deformation theory and effects of the anisotropic parameter R (¢ = 10},

In Fig. 17 arc represented the forming limit curves for two vitlues of the strain hardening
parameter (n = 0.22 and n = 0.52), for various values of the strain rate sensitivity coeflicient
m, and for the effective instability parameter ¢ = 10. The well known destabilizing effect of
the vertex for the path p = 1 is clear when the limit curves of Fig. 17 are compared with
those of Fig. 6.

It is worthwhilc to note that although the vertex is rounded by the rate sensitivity
effect, this does not prevent a fast development of the instability for p = |. Basically, the
forming limit curves are translated up by the stabilizing effect of the strain rate sensitivity,
which curiously enough is not stronger for the path p = 1.

The combined effects of the initial anisotropy characterized by the R-value and of the
vertex involved by the deformation theory are illustrated by Fig. 18 for ¢ = 10. These results
are in agreement with those obtained by Neale and Chater (1980).
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Finally, the results of the deformation theory (restricted to p > 0) and of the flow
theory are compared with experiments in Fig. 19. As discussed earlier, the results of the
instability analysis are very sensitive to the value of the effective instability parameter for
p >0, in the case of flow theory. For e = 2.5 the global shape and level of forming limit
curves calculated with the flow theory is shown to be comparable to the experimental curves
except for the A K. steel (Fig. 19a). For that value of e, the growth rate of the faster modes
is 2.5 times larger than the growth rate of the homogeneous strains.



626 D. Dupzinskr and A. MoLiNar:
8. CONCLUSION

The effective instability approach has been proven to be a useful tool in the analysis
of sheet metal ductility. The onset of instability appears to be of little significance if the
growth of the unstable modes is very slow.

The intensity ¢ of the instability process is characterized in the following way: e is, at
a given stage of the deformation. the rate of growth of the fastest unstable mode in the
lincurized perturbation analysis. The onset of instability corresponds to ¢ = 0. but the
instability is etfective only for a significantly large value of ¢. [t is emphasized that. as
discussed at the end of Section 3. the linearized analysis presented here is completely justified
for large enough values of e.

The effective instability analysis gives basically the same trends as the MK, defect
analvsis. The dependence of the limit strains on the value of the instability intensity
parameter ¢ presents the sume tendencies as the dependence of the limit strains on the
amplitude of the initial defect in the M.K. analysis. However. it must be noted that the
M.K. analysis can be viewed as a post-bifurcation analysis, while the effective instability
analysis is basically a linearized approach.

The effective instability analysis works for quite general material behavior (including
heat conduction and dynamic problems) and leads to simple analytical results where the
effects of the physical parameters are easily discussed.

Moreover, the match with previous bifurcation analysis for rate-independent behavior
(Hill, 1952 Stoéren and Rice, 1975 Hutchinson and Neale, 1978) appears clearly when
¢ = . The results of these authors have been extended to rate-dependent problems and
more complex material behavior.
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APPENDIX A

In uniaxial tension, the ratio of the transverse to the through-thickness strxin is, for an orthotropic material
(EHl. 193500
H+QN—F—~G~3H)sin* ¢ cos’*

Re = Fsin®p+Gcos’ b - (Al

where ¢ is the angle of the tension axis with the rolling direction of the sheet (x-direction). The R-values at ¢,
45 and 90 are
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Ry,=HG
AIN—(F+G) N ' R,
= — = ! . Al
R, SFEG) or = {Rys+ .)(H» Rm) (Al)

The principal axis of anisotropy (x. ¥) coincides with the principal axes of strain rate and stresses (X, ¥) as
long as the deformation is uniform. The principal values of strain rates are D,, and D,,. the principal values of
stresses are o, = o, and 6, = a,,. The effective stress (3) and the effective strain rate (6) can be expressed in terms
of these principal values:

t9

§ = :} Ryl + Ro)“c: ~ 2R Rt .0, + Ra(1 +Rwo}53 e
N Ry+ Rog+ RyRyy

3 2 R Ll L Rw - . -
= \/ o+ Run+ RoRuy [Ro{l + Rug) D3+ 2R Ry D, D, + Rag1 + RYDL] . {A})

3Ry Rop(1+ Ro+ Rug)

A lineur straining path is characterized by the value of the strain rate ratio p = D,./D,, or by the value of
the stress ratio x = 0,,/0,,. which are related by :

Ry = Rog + 2+ 2Ro0)
= . Ad
’ Ryo(l + Ry — Ry} (A9

In terms of these ratios (A3) reads:

é

- \/'g Ruol 1+ Re) = 2Ry Rugt+ Ry(1 + Run}r* '
T2 Ro+ Ron+ RyRug

Fn D"\/Z Ry+ Ryg+ RyRyy {R(,(l+Run)+'2l'RnRvn+Rco“ +Rn)p:]t‘:‘ (AS)

3 RuR{T+ Ry + Rug)

For normal anisotropy (R, = R, = Ry, = R), the effective stress and cffective strain rate are

_fREiL . w ]
VY F1 R PV S

. Roewmasn ., 2R 1
= . = D, N
i \/] 128 l)"+l+RD“,”+I)" (A6)
and the relation (A4) becomes
(x+aR-R)

P SRR (A7
APPENDIX B

In a non-deformabie solid plate with adisbatic boundarics, the heat flow is governed by the heat conduction
equation (conservation of culorific encegy)

el = ~ ;—,(hq,)., (x=1,2) (B

where /s the thickness of the plate. The heat flux vector q is given by Fourier's law, which reads for isotropic
heat conductivity

o
@ = —k a‘i’ (x =12, (82)

Al quantities are average values through the plate thickness.
In a rigid (elastic deformations neglected) viscoplastic solid a part ff of the plastic rate of work d¢ is converted
into heat. The conservation of cnergy results in egn (16).

APPENDIX C
The perturbed form of the flow law (10) is

(SDn = TH«$::"+::‘6T,,
8Dy, Tncsé‘+€§7'n
8D, = T, 08+E0T,, CH

]

SAS 17:8-8



628 D. Dupzinskl and A. MoLINARI
with

T, . oG,
0T, = —do,, = U,— 2
1= e, 0 s (C2)

where the components of the fourth order tensor U are defined by:

T, &
Cy=01—=06-—= (C3)
Coy €a,, Coy
Using the relations (9), these components are, in the principal frame of anisotropy (x. v).
v T, _3 G+H -
o S e T2FGrH T
v . 3 H T
o =0 s~ ey~ e
cT,
S =0 ——=—T.
Viws=1¢ ., wTa .
éT,, 3 H+F
s = = . T
Uy, =7 T IFrGiH T}
T,
Uy =622 = —T,T,
da,,
T, 3 N X
Uy =7 (2(_’? SYFEYGYH T T.



